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ABSTRACT

A method has beep proposed whereby any polynomial can be approxi-
mated in an equiripple manner by a rational function. The properties and
form of this rational fuiction are discussed., Several examples are used to
illustrate the theory. Most of these examples are chosen so that the approx-
imating rational function can be identified as a network function part; in
particular, the group delay has been given special emphasis, The ideal group
delay vs. frequency characteristic of filter is a constant, This type of

group delay is approximated in an equiripple manner,

In addition,a numerical scheme is proposed such that from a given
crude equiripple approximation a more exact solution can be obtained., An
example used to illustrate this approach is the problem of compensating the

non-constant group delay characteristics of a sharp cutoff low pass filter,
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1., HISTOR.CAL BACKGROUND AND STATEMENT OF THE PROBLEM

1.1 Status of Equiripple Rational Functions as Used in Filter Theory

The use of equiripple polyncmials (such polynomials are more commonly
known as Chebyshev polynomials) in filter theory has become classical knowl-
edge%o’31 Briefly, these potynomials approximate zero in the normalized inter-
val (-1, 1) in an equiripple or Chebyshev fashion. Furthermore, consistent
with the degree of the polynomial, the maximum number of peak deviations is
obtained.8 To attain this maximum number of deviations, all of the polynomial's

degrees of freedom are utilized (the multiplying constant is not considered

a degree of freedom),

The elliptic function as used in equiripple pasé and stopband
filter approximations is also of a classical nature.6 Instead of a polynomial,
however, the elliptic function is rational, i.e., a ratio of two polynomials.
Within the interval for which zero is being approximated, this rational function
behaves like the Chebyshev polyncmials, Outside of this region a difference
occurs in that the rational function also approximates infinity in an equiripple
manner. Again the number of maximum deviations is the largest number possible

2
for the chosen degree of the rational function. 1

To obtain some freedom and more versatilaty in equiripple approxi-

-

2 5
mations, Sharpe N following closely the methcds of Bernstein., developed a

2
rational function with equiripple properties within a prescribed interval.
Furthermore, the pcles of this function were free to be chosen on the imaginary
frequency axis (outside the approximating interval) and on the real frequency

axis of the complex plane. Bennett4, through the use of conformal transformations,
and Helmanls, by extending the definitions of the Chebyshev polynomials, suc-
ceeded in developing a rational function with arbitrary complex plane pole
locations, Such functional forms are of a general type, the Chebyshev poly-
nomials and elliptic rational functions being special cases. In addition to
the above, many authors have contributed to the area of equiripple functions,

An extensive list of some authors is given in the literature.31

1.2 Status of Constant Group Delay Approximations

A complete history and a mention of all who have contributed to the
area of group delay approximations would be a volume in itself. Thus, only a

few of the most important will be mentioned.




2

The first classical contribution in the area of group delay approxi-
mation was made with the appearance of Thompson's28 paper on the maximally
flat group delay. Later, Storch26 showed that the polynomial obtained by
Thompson was a class of Bessel polynomials, hence the common name "Bessel

'

filter"., Utilizing the great storehouse of knowledge involving Bessel func-

tions, Storch gave this solution a very elegant treatment,

As the Bessel filter gives an excellent approximation near the origin,
but suffers somewhat for higher frequencies, a logical extension was an

22
attempt to approximate the group delay in the large. Several authors, among
18

, and Darlingtonlo, have

the most important of which are Guilleminl4, Kuh
succeeded in approximating the group delay in this manner to give near equi-
ripple group delay characteristics over a larger frequency interval. Briefly,
their methods of approach were (1) choosing an equally spaced pole distri-
bution parallel to the real frequency axis in the complex plane, (2) wutilizing
a potential analog approach to determine the best pole distribution on an
ellipse in the complex plane, and (3) employing a Chebyshev polynomial series
to approximate a linear phase., At this point another approximation can be men-
tioned which would be classified as an approximation near the origin. It is
the so-called Gaussian magnitude approximation due to Dishal.11 The point of
view used here departs from that of the previous authors in that the phase is
attacked indirectly. Instead of considering the phase, the magnitude function
is made to approximate the Gaussian error function by truncating its Taylor

series expansion., The final result is a monotonically decreasing group delay

which is relatively constant within the passband.

Following closely the work of Helmaan, Ulbrich and Pilo1:y29 utilized
Bennett's4 conformal transformation to formulate a set of non-linear simultaneous
equations that when solved would give an equiripple group delay. The set was
then solved using iterative techniques on a digital computer. The main dis-
advantage to their published:results is that the magnitude of the ripple is an
absolute number when, as shown in thre next section, the time domain error, or
dispersion, is proportional (in a first order approximation) to the fractiomnal
or percentage group delay ripple. Recognizing this shortcoming, the author
employed the rational function developed in Chapter 2 to formulate a different
set of non-linear simultaneous equations which were also solved using an itera-
tive scheme on a digital computer. The author's work was just completed on

2
equiripple group deiay, however, when Abele published similar results.



1.3 Ideal Low Pass Filters with Near Constant Group Delay

One objective of this work is to obtain several realizable transfer
functions with an equiripple ‘group delay characteristic., Since such systems
are used primarily for the transmission and filtering of pulses, a time domain
error in the impulse response of a filter due to the group delay ripple would
be of interest, If two reasonably wvalid simplifying assumptions are made,
an error estimate is easily obtained using the method first described by
Wheeler.32 These assumptions are (1) the group delay ripple is cosinu-
soidal, and (2) the group delay is approximately constant over the frequency

spectrum for which the filter does not give a large attenuation.

Consider a transfer function H(jw) which has a group delay T(w) of

the form
T@ =T (- D" e cos T ) (1.1)
o

where

To = average delay within the filter's passband

= the peak fractional group delay deviation
m = the number of half cycles of ripple the group delay
possesses in the interval (O,wo)
w, = normalizing constant.

The group delay for such an idealization is illustrated in Figure 1.

Utilizing the definition of the group delay

Tﬁn)f - dgﬁ”) (1.2)
the phase of H(jw) is found to be
m_ “ miw
B(w) = _TO [0.) - (-1) € ﬁ Sln——(;; :l . (1.3) —

-2 32
Papoulis 3 has shown, using Wheeler's method ~, that the impulse response i(t)

of the transfer function H(jw) with the phase characteristic of (1.3) can be

put in the form: ©
. _ _ knm
10 =) g @ b (s - T (1.9

k=% °



where .
h(t) is the inverse of |H(jw) |e€

Jk is the Bessel function of the first kind, and

If § is very small compared to one, (1.4) reduces to

) . (1.5)

it) *nt) + 2 nt -y 28 s @
2 (,oo 2 w

[e]

For a lumped-element system the phase of the transfer function
approaches nff/2 as w tends to infinity, where n is the number of poles less
the number of finite zeros, Hence, the area under the group delay curve
fromw = 0 tow = o is mr/2. If the fractional part 7 of this area follows

the boundary of the area fromw = 0 to w = Wy of Figure 1, then

= mr
To 525 7

o

= (—1) D7E

6= (D 2m

and (1.5) can be written as
m 7ne 2'ro m m 7ne 2To m
l(t) ~ h(t) + (—1) am h (t - -—77— T‘l ) - (—1) am h (t + —-'n— ; ). (1.6)

A typical impulse response will then appear as shown in Figure 2,

From the foregoing analysis, several conclusions can be drawn. Some

of the more important are:

1. The output pulse is dispersed in the sense that the time bandwidth

product is increased hecause of the non-constant group delay.

2, The leading "echo' appears to give an anticipatory feature to
the filter, In a physical system, however, this echo would

in effect cancel with the main pulse to prevent such a phenomenon.
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Figure 1. Idealized equiripple group delay with m (a) odd and (b) even




i(t)

Figure 2,
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Impulse response of a filter with the idealized group delay of
Figure 1



3. The magnitude of the two main distortion terms, centered at

T, * ZTOM/n 7, is proportional to the fractional ripple €.

4, The distortion or error terms are proportional to n/m, i.e.,
the ratio of the number of T/2 multiples of phase at ¢y =%

to the number of half-cycles of ripple.
5. The dispersion terms are proportional to the constant'n.

1.4 Statement of the Problem

The Chebyshev rational function of Helman and Bennett is a very
practical and useful form as applied to network problems. However, general
and useful as it is, it does possess some basic limitations. Two of these

are:

1. If a polynomial more general than a constant is to be approxi-
mated in the Chebyshev sense a serious difficulty is encountered.
For example: using Bennett's conformal transformation, suppose
a linear term is to be approximated with a rational function
of a chosen degree. The end result demands that the poles have
to be chosen in such a manner that a zero will appear in the
proper location to nullify the effect of a particular pole at
the same location. Because of its form, this would indeed be

a difficult task.

2., Some problems require a rational function approximation of a
polynomial such that the number of ripples is less than the
maximum possible number, Again the currently available Chebyshev

rational function is not adaptable to such a situation.

The problem is thus to develop a closed form rational function which
is general enough to solve many of the problems solvable with the existing
Chebyshev rational function and, in addition, be sufficiently flexible to
overcome the above stated difficulties. Once such a function is developed
there exist many practical network problems to which it can be applied; some
solved, and some unsolved. Thus, a¥ter the main problem has been studied,
several of the solved and unsolved varieties can be investigated with the
purpose of exploiting the potentials of another tool in today's existing body
of knowledge. Special emphasis will be given to group delay problems, as it



2
has been only recently that equiripple solutions to this problem have appeared 9’2,

and another method of attack would be of value.

As general as the rational function is which overcomes the two stated
difficulties of the Bennett and Helman forms, it is not difficult to think of
equiripple or weighted equiripple problems which are not easily adapted to fit
any equiripple rational function. With this in mind, a numerical scheme is
suggested and illustrated to solve some of the existing group delay problems

which may be encountered,




2. THE DEVELOPMENT OF A PROCEDURE FOR APPROXIMATING POLYNOMIALS
WITH RATIONAL FUNCTIONS TO GIVE AN EQUIRIPPLE ERROR

Many problems arise wherein a rational function is desired which
approximates a polynomial. Often this polynomial is of a low degree; indeed,
most practical problems demand that it be nothing more than a constant. The
problem undertaken in this chapter is thus the determination of some proper-

ties and how to construct sich a rational function.

2.1 The General Case

The rational function

n
z i
a, x
1
R (x) =2 (2.1)
nm m
- .
2) b, xl
1
i=o

of given numerator and denominator degrees n and m respectively is to be

found which approximates the given polynomial.

£
- i
PZ(X) = E: c, X (2.2)
i=o

of degree £ in an equiripple manner in the interval a < x < B. The constants

b

a .
i?

i)
be unity. 1If an is to approximate Pz in [a,B]with an equiripple error of peak

and c, are all real, and, without loss of generality, b is assumed to
i m

deviation € then

P -€<R <P, +¢€ for a < x <8,
)/ - mm— "} - =
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The number of times the equality is satisfied as x takes on all values between

a and 3 will be called ne. An upper bound on ne will be determined subsequently,

As an intermediate step in determining the numerator An(x) and denom-
inator Bm(x) or the rational function an(x), the error functions E+(x) and

E (x) will be defined, From these, some useful properties will be deduced.

E () =R (x) - [P,(x) + €]

(2.3)
E (x) = an(x) - [Pﬂ(x) - €],
or, in terms of A and B
n m
. An - Bm (Pz + €)
+ B
m
(2.4)
. - A - Bm (P£ - €)
. B ¢
m

For an arbitrary example, the functions an, ) E+ and E_ are <hown in

Figure 3.

Except for one rare case, the numerator polynomials of E+ and E are

of degree k where
£ 4+ m
k = the larger of

The one exception occurs when n =m + £ (n # 0) and a =c,. For this com-
bination, the degree of E+ and E_ is k-1, Ifn=m+ £ with n = 0 the prob-
lem is trivial since only constants are involved. Thus, it can be concluded
that the number of zeros of E+ and E_ is k (for the above noted exception k - 1).
For an to approximate Pz in an equiripple manner with the largest possible
number of maximum deviations of ¥ € all zeros of E+ and‘E_ are required to be
real. Furthermore, because of the tangency at the internal zeros these will

be double. The two zeros at the ends of the approximation interval will be

simple.

S
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P,R
' R P P+e€
[ a
/ .
“~‘~—_~__44//'
LP-G
~
\\
(:1 = + t 23 X

Figure 3. The functions R, P, E+ and E_ of an arbitrary example
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The maximum number, n,, of * € deviations is now easily determined.
Knowing that the total number of zeros involved in E_ and E_ is 2k and all but
two of these are double, the number of extrema points is
_ 2k -2

ne———2—+2=k+1.

Unless stated otherwise in the following, the k zeros of E+ and E_
will be assumed to be (1) real, (2) all double except the two at each end of
the interval, and (3) interlaced, i.e., in going from x = a to x = B a zero

of E+(E_) will be followed by a zero of E_(E+), etc.

Making the definitions

Il
o

=A - (P, + €)B_

numerator of E
+ + n

(2.5)

]
o
I

numerator of E =A - (P, - €)B ,
- 4 m

- n

it is possible to distinguish five different cases which will exist depending

upon the degrees £, m, and n, These cases are listed as follows:

)

Case Ia: n> 4 +m ; L>1 k =n
k
Q+ = an II (x - gi)
i=1
X (2.6)
o =a J] x-np
i=1
Case IB: n=4 +m ; L>1 k =n
k -
Q, =(a -c¢) II (x - g;)
i=1
K (2.7)
Q=G -¢) [ &-np




Case II:

Case III:

Case IV:

Case V:

n<m ;

n<m+ 4

i=1
" (2.8)
Q =a J] x-np
i=1
4L =0 k =n
k
=(a-co—€)H (x - g,)
i=1
K (2.9)
= (an - c_+€) II (x - h)
i=1
L =0 k=m
k
=—(co+€)H (x - g;)
i=1
K (2.10)
==ty J] @x-np
i=1
; L>1 k=m+ 4
k
+ T % II (x - g;)
i=
K (2.11)

hi)

1
)
k?
—
~~
x
1

13



Two important differences to note in the above cases are (1) whether or not
the constant multiplying factors of Q and Q+ are the same and (2) the value

of k.

Knowing Q_ and Q+ in terms of the multiplying constant and the points
of maximum deviations, it is a simple matter to solve for‘An and Bm from (2,5),
The results are

(P, +€) Q- (B, - ©Q

An = 2€
(2.12)
. -9
m 2€ :
Hence, R is
nm
Lot e -®m0q .15,
nm - B Q -Q ‘
m - +
which can also be rearranged to fit into the forms
Q +Q
= € —m— .
an Pz + T - Q (2,.14a)
- +
Q+
=P, + € e 2.14b
) 2 -9 ( )
+ -
Q—
= - € 2€ ——— .
an PE + q - @ (2.14¢)

The number of arbitrary constants for a given case can now be deter-
mined. The solution will be given in detail for Case Ia. The results are

tabulated in Table I for the remaining cases.

The defining relationships of Case Ia are n> £ +m ; £ > 1. From
these it is evident that k = n, and n, =n+ 1. The following information is

obtained by an inspection of (2.1), (2.2), (2.6), and (2.13).

14
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n, = degree of Q+ - Q_ =n -1

=
L1E]

degree of Q+ (Pz - €) =n+ 4 -1

n_ £ total number of constants
=1 (€) + ne (number of error extrema)
+ £ + 1 (number of constants in Pz)
+ o (nx = 1 for case 2, zero otherwise)

=n+ £ + 3

n = number of numerator coefficients to be zero so that n is the
desired integer
=n4—n
£ -1

4

n_ = number of denominator coefficients to be zero so that m is the

7
desired integer

= n3 - m
=n-1-m

n8 = number of constraints which have to be satisfied
= n6 + n7
=4 +n-m-=-2

ng = number of arbitrary constants
=I'19--n8
=m + 5

A word of caution should be inserted at this point, The arbitrary
constants are not unlimited in value., Rather, there are definite bounds placed
upon their range, this range being defined by the particular problem being

solved.

An example will now be given to illustrate the foregoing theory., A
rational equiripple approximation to the polynomial P1 = x is desired in the
interval (l, 10). The error extrema, €, is to be 1/2, and the degree of the

numerator and denominator is to be 4, A solution is as follows:
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Since £ =1 and m = n = 4, the inequality n < 4 + m is satisfied

and the problem fits Case V, hence,

(a) the maximum number of extreme points = 6
(b) the number of arbitrary constants = 8

(c) the number of constraints = 1.

Five of the arbitrary constants have been specified (€, c.y €15 @ B). Since
the number of extrema — of which two are specified and three are arbitrary —
is 6, one extreme point will be defined when the others are chosen. The

approximation will be similar to the illustration of Figure 4,

From (2.13), the general form of an is

Q (P, +€) - Q (P, -€)
- £ + 4
Ry = T q, . (2.15)

Using the notation shown in Figure 4

Q =- (x- 1 (x-x)° x-xp?

9 9 (2.16)
- (x-10) (x - x3) (x - xl) .

O
1}

The requirement that n = 4 places a restriction on the choice of the set

5
(xl, ooy x4). Equating the coefficient ¢f x to zero, or setting

X, - X, +Xx_-%x,-4=0 (2.17)

satisfies the demand,
An arbitrary choice of xl, X5s and X4 is 3, 4, and 8 respectively.
This choice makes X, = 11, but this is outside the approximation range and so

1? X5, and X, respec-

must be greater

cannot be used, Similarly, a choice of 1, 7, and 8 for x

tively requires x4 = 6, Again this cannot be used because x4

than X5 and less than 10. A choice of 3, 5, and 7, however, gives a realiz-
able Xy» namely 9. With the last set of xi's the rational function reduces to

1.5x4 - 34x3 + 337x2 - 1578x + 3217,5
R44 = 1 3 5 . (2.18)
x - 28x + 294 - 1356x + 2385




Raq (X)

P =x
—
=
— — — ~
—
—
- ///i - \\\
— — —
et + + ' X
1 X Xo X3 Xxq 10
Figure 4, The polynomial P. = x approximated in an equiripple manner with

1
R44
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Before continuing on to another topic, one more detail needs to be
investigated. This detail concerns the possibility of the existance of another

rational function ﬁnm which (1) passes through 1»"’e t € at the ends of the

approximating interval (a, B), (2) is still tangent to Pz and passes through

t € at the internal points x X b and (3) yet, doesn’'t

P, 12 Kgr tee X

intersect PZ within (a, B). Seemingly, such a rational function (Figure 5)
is easily sketched. From such a sketch, however, it is observed that outside

the interval (a, B) the function ﬁnm must satisfy

- R €
P,-R_|< (2.19)

or ﬁnm will intersect with Pz ¥ €, Such an intersection is impossible,
however, because the degree of the numerator of E+ is not large enough to
permit any more intersections. As €, a, and B are arbitrary, it is concluded

that the inequality (2,19) cannot hold.. Hence, ﬁnm does not exist.

2,2 Even Rationals Approximating Even Polynomials

The case under consideration is a special, but important, case of
Section 1. Because both an and P£ are even, only one half of (-B, B) need
be considered. The approximation is carried out as though Pz was being approxi-
mated in (0, B). Then at every zero of E+ and E_ the factor (x - xi) is replaced
by (x2 - xiz). Several examples of this type of approximation are given in

Chapter 3.

2,3 0dd Rationals Approximating Odd Polynomials

Again this is a special case of Section 1. Under the assumption

that an and‘Pz ars odd, the following conclusions can be drawn:

a, From the arbitrary odd approximation shown in Figure 6 it is noted
that
K. Q (0 =-K_Q (%

where K+ and K_ are multiplying constants,

b. Since P, is odd, £ # 0; hence from Table 1 it is seen that the -

YA
multiplying constants of Q_ and Q+ are equal, Thus
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at the internal points Xy Xgy eer X0 o
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Figure 6, An arbitrary odd polynomial P approximated by an odd rational



22

¢. Finally, it is observed that

P,(x) + € =~ [P,(-x) - €] .

Putting all three conclusions into (2.13)

X Q+(-X) [PL(_X) - €] - Q+(X) [Pz(x) - €]
nm "-Q;(-X) - Q+(X)

(2.20)
_0dd {Q, () [P (x) - €]]
S B [Q,]

where Odd and Ev are operators which are defined to take the odd and even

parts, respectively, of what follows,

Examples of this type approximation are given in Chapter 3.

2.4 Observations and Summary

In this chapter a rational function has been developed which will
approximate any polynomial in an equiripple manner, The method has several

desirable features. Some of these are:

a, There is a large amount of freedom available in the form of
arbitrary constants, for fitting the rational function to a

wide range or problems.

b. The rational function need not he restricted to approximating
only constants as does the rational function of Helman and

Bennett.

c. Though not mentioned explicitly, this rational function need

not approximate P, with the maximum number of ripples, If

fewer ripples arezdesired, instead of using the factor (x - xi)
in Et where X, is positive and real, the term x, can be made
negative. Indeed, quadratic factors with complex roots can

be used, if desired, to decrease the number of ripples. As

the constants within these factors are arbitrary, the rational
function is given a more arbitrary character. An example of

this type is given in Chapter 3,

Ay



Sobme limitations on an as developed in this chapter are:

a, The denominator is the difference of two polynomials and is

not in factored form,

b, In developing a rational function an which approximates a high
order polynomial or has several zeros at infinity, several

- non-linear simultaneous equations will have to be solved.

The above limitations, however, are overcome to a large extent by

the ever increasing availability of high speed digital computers.
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3, APPLICATIONS OF THE EQUIRIPPLE ERROR RATIONAL
FUNCTION OF CHAPTER 2 TO NETWORK PROBLEMS !

The well known theorem of Weierstrass says that any function con-
tinuous in the interval (a, b) may be approximated uniformly by polynomials
in this interval.9 In general this requires a polynomial of infinite degree.
Fortunately, there exists a large class of problems which do not require an
approximation of such high degree. Indeed, in many problems the desired
function is itself a low order polynomial, Such is the case with many of the

network function parts.

A network function is a rational function of the complex variable

s, which may in turn be broken up into several parts, many of which are them-

J
selves rational in the real variable w. Among these are the real part, the
imaginary part, the magnitude squared function, and the group delay function.
This chapter will thus be devoted to finding a rational which approximates

a low order polynomial and yet can be identified with one of the above network
function parts. This in turn may be physically realized by conventional

techniques if desired.30

3.1 Real Part Approximation

The real part of a network function H(s) is a rational function of
the real variable w., That this is the case can be shown very easily by con-

sidering the network function,

M. + Nl
M2 + N2

H(s) = (3.1)
where M2 and N2 are the even and odd parts, respectively, of a Hurwitz
polynomial in the complex variable s =0 + jw. Similarly, M. and Ni are the

1
even and odd parts of any polynomial., From (3.1) the even part

(3.2)

24




is easily found. By inspection this is also a rational function, On the

real frequency axis s = jw, and the even part becomes the real part

Mle - N1N2
2

My — Ny

Re H(jw) = (3.3)

which is rational in the real variable w,

If a rational function is to approximate a polynomial and yet be
identified as a "positive real' real part it must not only approximate the

polynomial, but satisfy the following properties:

a, possess no poles on the imaginary axis

b. the poles and zeros must have quadrantal symmetry

c,.it the denominator of H(s)is of degree t, then the denominator
of Ev H(s) is of degree 2t. The degree, 2r, of the numerator of

Ev H(s) must satisfy the inequality

0 < 2r < 2t

d. imaginary axis zeros of Ev H(s) must be of even multiplicity,
If H(s) is not positive real d and a can be relaxed.

Several examples will now be given wherein a low order polynomial
is approximated by the rational function of Chapter 2, and yet is manipulated

to satisfy some or all of the above positive real properties.
Example (3.1)

A rational function is to be obtained which satisfies all of the

above positive real properties and in addition is to

a, approximate the degenerate polynomial '"unity' with a tolerance
of unity

b, have a maximum number of extreme points which are separated by
equal frequency intervals

¢, have a denominator of degree 2N

d, approach the constant value of 4 for high frequencies,

An illustration of the desired function is shown in Figure 7 for N even and

N odd.

25
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Figure 7. A sketch of the desired real part. The function is given for pos-
itive frequencies only as it is even
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Solution:

It is first observed that 4 = 0, and m = n so that Case III of

Chapter 2 applies to this example. Furthermore, an and P, are both even

£
so the corresponding simplifications can be used, For the half-interval
(0, M N-2 —
2
-2
= el —€ - - - i
Q = (- 1-6 w-No ] [w- - 20)]
i-1

> N even

N/2
Q =(a,,. -1 +€) H (w - (N—21+1)]:2
=1

- 2N
-/ (3.4)
»1 R
2
Q+ = (azN' 1 -€) (w-N) H {w- (N - 21)]2
i=1
> ; N odd.
¥
2
Q, = (a, - 1+ H - - 2i + 1)]°
i=1
o/

The constant a2N can be used to satisfy requirement (d); then using (2.13) with

€ = 1 the final result

2 (3.5)

N/2
4 H (w2 - (N- 2i + 12

1=
- N even

2
ReHN(w ) = N-2 !

N/z 2 2 2
2 II [w2 - (N - 2i + 1)2] - wz(wz - N2) II [w2 - (N - 21)2]
=1 =1




N1 (3.5)
2 2
4’ II [w2 - (N - 2i + 1)2]
2 i=1
ReHN(w ) = ¥ N1 ;
2 9 2 9
20 J] 02 - - 28+ 1% - - &) J] 1% - ov- 207
i=1 =1

valid in [—N,N] is obtained. With N =1, 2, 3, and 4, the above reduces to:

2 4w
ReHl W7 = 2
w” o+ 1
2 2
2, 4@’ -1
RHy (W) ===
w
(3.6)
2 2 2
2 p (W - 4)
RHy (W) = 4 p)
w - 50w + 13w + 9
2 2 2 2
2, _ 4w - 1) (W - 9)
ReH4 (w) =

4 2
w - 16w6 + 92w4 - 104w + 162

By inspection, (3.6) satisfies the properties of the real part of a positive

real driving point function.

Example (3.2)

A rational function, G is to be obtained with the following con-

N}
straints:

a. approximates the degenerate polynomial "'zero" in an equiripple

manner
: 11 ‘f =
b im Re N 0
' 2 2n + + +
c. ReGN(n ) = (1" forn=0, T 1, 2, ..., T (N1

d. R G (fl)'= 0
en ‘22

e, has 2N-1 extreme points,

28
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The rational function to be determined is sketched for positive frequencies

in Figure 8,

Solution:

This problem appears to fit Case IV, however, two differences are
noted; (1) the approximation interval extends from minus to plus infinity, and

(2) the number of extreme points is 2N-1 which is less than the maximum 2N+1.

To modify Case IV such that is meets the stated requirements,

imaginary zeros are placed at u = + ja in Q. (Q)) for N even (odd), thus

giving: ~
N-2
T2 5
Q+ = —wz (wz + az) II (w2 - 412)
=1
2 ; N even
N/2
-2 2 2
Q,=HLw -~ (2i - 1)7)
i=1
~ 3.7)
31 )
2 2 2 2
Q+ = =W II (w - 4i)
i=1
\, ; N odd.
*1
2 2 > 2 2
Q = (@ +a”) II lw” - i - 17
i= J

X2
e 2 2 2 2 2 2 ? 2 2 2
H[w-(Zi-l)]—w(w+a)H(w—4i)
ReGN = 2= ;f; ; N even (3.8)
N/2 5 2 2
II [w2 -~ (2i - 1)2] + wz (w2 + a2) II an - 412)

i
1]
fa]

i=1

29
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TGl —— et

Figure 8, The real part of a network function which approaches zero for large
frequencies




N-1 N-1
2 2 ’ 2 2 2 2 ; 2 2 2
(w +a)H[w—(21-l)]—w H(w—4i) ,
i=1 i=1 N
R Gy = 1 ) ; N odd. (3.8)
2 2 2 2
2 2 2 2 i 2 2
(w2+a)H[w—(21—l)}+w H(w—4i)
i=1 =1

2
As a  is arbitrary it can be specified so that the numerator of (3,8) is zero
at w = 1/2. After several algebraic steps, the value of N(N-1) is obtained

for a .,

Later in this chapter ReG will be used for another example, there-

N
fore, it is tabulated for N = 2 through 6 as follows:

4 2 + 1
ReGZ = ﬁ
2w + 1

12<J.>4 - 27w2 + 6

R G =
7] p)
€3 - i’ v

-24w6 + 198(1)4 - 372(.02 + 81
RGy = —3 6 4 2 (3.9)
20" - 16w + 38w + l2w + 81

2
400)8 - 810(1)6 + 47400.)4 - 7615w + 1620

RG =
5 010 1 4008 4 2460° - 3800% + 5770° + 1620
| —600t0 + 24150% - 318600° + 1555350 - 23943002 + 50625
RO = 13 10 8 6 1 2 .
207% - 80w + 10710° - 53000° + 101270° + 6330w° + 50625

It is apparent that the above functions satisfy the properties of

a real part function; however, it is not a positive real one,
Example (3.3)

A rational function ReK is to be found which has the properties of

N
a real part function and yet approximates cos m w within the interval (-1, 1).

3l
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Solution:

The function developed in Example (3.1) approximates cos 1 @ in
the required interval; however, a better approximation can be obtained if
the rational function is zero not only at w = t 1/2, but also at w = t 3/2.
To satisfy this last added condition requires another arbitrary constant.
A rational function is thus chosen with the maximum number of extreme points
all except the last of which are separated by a unit increment, The last
extreme point and the value of KN at infinity will then be used to place
two zero crossings at w = * 1/2 and ¥ 3/2, A sketch of the desired rational

function ReK is shown in Figure 9.

N
From an inspection of Figure 9, Q_ and Q_ can be easily determined.

Placing these quantities in (2.13) gives the rational function

N-2
N/2 ) 3 .
CHESI w2 - (2i-1)%] + (aZN-l)wz(wz—bz) I1 (w2-4i2)
i=1 i=1 .
ReKN = Eig ; N even
N/2 2 2 2
(D ] (w2 - (2i-1?] - (a2N-1)w2(w2—b2) I (w2-4i?)
-1 i=1
(3.10)
Y x1
2 2 2 2
(gD @D [] 10 - 20?1+ ey 0® [T % as®
i=1 i=1 _
ReKN = N-1 -1 ; N odd.
T2 9 2
(a2N+1) (wz—bg) II [uF - (21—1)2] - (a2N—1)w2 II Gn2—412)
=1 i=1

\ Letting w = 1/2 and setting the numerator equal to zero gives the

following equation:

N2
(a,.. + 1) 2 2 2
(aZN s Q -24b/) ST1 | ; * 2; =0 ; N even (3.11)
2N (2N - 1)° (2N - 3)" | _



Figure 9,

A rational function which approximates cos 7T w
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N—l

(a - 1) 2\ 2
(1 - 4b2) 4 (aZN Y H (; + 3;) = ; N odd. (3.11)
i=1

In a similar manner except with w = 3/2

N-2
2
(a + 1) \ 2 \ 2
2N I I 3 - 4di 3 + 4i
W——(ZN'F].)(ZN—E))'FQ(Q““D) 1T + 41 5 - 41 -O,Neven
i=1
(3.12)
N—l
(a - 2\ 2 2\ 2
3 - 4i 3 + 4i
(9 - 4b%) + 9—52 — || — = 41) =0 ; Nodd .

2
The appropriate values for b and a2N can now be obtained from the simultaneous

solutions of the linear equations (3.11) and (3.12). After many algebraic steps

the solutions

= DY ann - D
(3.13)

are obtained. It is now possible to determine the explicit expression for

ReKN for any N, This is done for N = 2 through 6 as follows:

160 - 400”4 0

R K
5.
e 2 20t + 40”4+ 0
‘ 6 4 2
-48y° + 408w - T4Tw  + 162
- 3.14
R K3 6 2 2 (3.14)

2w + 8w  + 53w + 162

2
_ 96w8 - 1968w6 + 11430w4 - 18612w + 3969
2w8 + 8w6 + 134w4 + 972w2 + 3969
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(3.14)
—_— ~1600'0 + 64800® - 852000° + 4174600” - 6369750% + 134460
&5 w0 + 2460° + 27400 + 2657702 + 134460
I 2400 2 - 16920010 + 4213350 - 45011400° + 199563750 - 292167900° + 6125625
e 6 12 10

2w - 20w + 4710.)8 + 47800)6 + 88727(1)4 + 1011690w2 + 6125625

A check of the accuracy of the sinusoidal approximation at w = 1/4

gives an error of .248, .0184 and .00296 percent for N = 2, 3 and 4 respectively.

This section on real part approximation will be completed after a
novel technique is presented for obtaining linear phase all-pole transfer functions,
From the theory of the Hilbert transform, if the real part of a network function
3
is cosinusoidal then the imaginary part will bhe sinusoidal.l Hence, the phase
-1 im part -l sinmw

= ———— = —_— = 3.
0 tan real part tan COS T W mw ( 15)

will be linear,

The one drawback to the above is that the sine is the Hilbert trans-
form of the cosine only if the latter is defined for‘ail frequencies. If, how-
ever, the real part is cosinusoidal over the finite freduency interval (—wo, wo)
and zero elsewhere, then the imaginary part will be roughly sinusoidal in the
vicinity of w = 0. The reasoning for this last statement is best explained by

noting the Hilbert transform of the cosine
Im part = + 1 f cos § d§ . (3.16)

This integral relationship indicates that the behavior of the imaginary part,
at a frequency wo, is due primarily to the integrand within the vicinity of

is so slow outside this

1
wo. The modulation of the cosine function by e
vicinity that the positive and negative areas nearly nullify each other.

The real part function developed in Example (3.2) is near cosinusoidal
in the interval (-N, N) and approaches zero elsewhere. Hence, using the well
3
known Brune-Gewertz technique, 0 the function GP(S) can be obtained from
|

ReGN(wz). This method involves the factorization of the denominator polynomial
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and the solution of several simultaneous linear equations; these tasks make
it a very laborious problem for high order real parts. To overcome these
difficulties, a digital computer program was written to perform the necessary
operations. The resulting GN(S) obtained by this program are given below for

N = 2-6,

-1,08719s + .707107
s2 + 1,18721s + .707107

1.8717052 - 2,16633s + 1,73205
53 + 2.0482352 + 3.,09762s + 1.73205

—2.6446153 + 4.34677s2 - 10.1194s + 6.36396

G4 =2 3 5 (3.17)
s + 2,89390s + 8,18732s + 10.4980s + 6,36396

3.412958" - 7.2539953 + 33.087352 - 39,2985s + 28,4605
5 5

4
Gy = 4 3 2
s + 3,73461s + 16,9736s + 34.8719s + 47.6806s + 28.4605

G = —4.1792555 + 10.887954 - 81621353 + 139.97452 - 252,955s + 159,099
6 56 + 4.5731055 + 30.456654 + 86.775353 + 200.779s2 + 258,945s + 159,099

Though it isn't immediately apparent without factoring the numerator,
all the zeros of GN(s) are in the right half of the s-plane. Furthermore, the

phase of a right-half plane zero at o, + jw, is indistinguishable from the phase

1 1

of a left half plane pole at -01 +‘jw1. Therefore, if an all pole transfer
function GN(S) is desired, it can be obtained from GN(s) = N(s)/D(s) by replacing

s with -s in the numerator N(s), and then placing N in the denominator. Hence,

A

= m wheré A is a constant.

GN(s)

From the aN(s) so obtained, the group delay response was calculated and plotted

as shown in Figure 10. From this plot it is concluded that:
a., The group delay approximates 1 as predicted in (3.15).
b. The approximation is better near the origin as predicted.

c, The approximation is better near the origin for higher values of N.
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d. The group delay is relatively constant within the 6 db passband.

e. The number of group delay ripples is not a maximum,

3.2 Imaginary Part Approximation

The imaginary part of a network function is an odd rational function

of the real variable w. This is easily shown by considering the odd part

N.M, - N.M
0dd H(s) = 12 221

My - Ny

(3.18)

of the network function of (3.1). It is now clear that upon letting s = jw
the above will be an odd rational function in the real variable w multiplied

by j. Hence, it is the imaginary part,

The primary property of the imaginary part is that it is odd, How-
ever, if the rational function of Chapter 2 is to be identified as an imaginary

3
part, it must also possess the properties 0
a, the numerator polynomial must be odd
b, the poles must have quadrantal symmetry

c. the degree of the numerator must be less than or equal to the
degree of the denominator plus one, equality holding if H(s)

has a pole at s = =,

Several specific examples will now be given wherein an odd poly-
nomial is approximated by an odd rational function to give an equiripple error,
In addition it will be seen that the rational function so obtained also satisfies

the above listed properties of an imaginary part.
Example (3.4)
An odd rational function is to be found which
a. approximates the polynomial P, = w in the interval (310, 10)
b. has a peak error of unity in the passband
c. has a 4th degree denominator and 1lst degree numerator, and

d, satisfies the properties of an imaginary part of a network function.

Such a rational function is illustrated in Figure 11,




——
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H{w)

Figure 11, An odd

Wy w, 10

rational tunction approximating the polynomial P1 = w

i
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Solution:

Both the rational function and the polynomial are odd, hence the
rational function can be determined from the simplified form of (2.20). By
inspection:

0dd (@ - 1) (@+10) +u)? - w)?

Ev (w + 10) (w + wz) (w - u)l)

Obviously, the denominator is fourth degree, but the numerator is of fifth
degree. Thus, wl and wz will have to be used to set the coefficients of

5 3
w and w equal to zero,

The coefficient of ws is immediately observed to be

a; = 9 - Zwl + 2w2 =0, (3.20)

Solving for w,

w, = W, + % . (3.21)

With this relationship (3.,19) can be manipulated to give

) (3.22)
2 81 1089, 3 4 3 369
Hw) = (-9w2 -z W, +‘~1;—) W+ (9w2 + 81w2 + = W, - 405w2)w
B 4 2° 99 405, 2 4 3 81 2 g
(w - )llwz + > (.02 - T) w o+ 10((1)2 + 90.)2 + vy wz )
Setting
2 81 1089
Oy - Wyt =0 (3.23)

satisfies all requirements of the stated problem. The values of Wy and wl,

determined from (3.21) and (3.23) are

w, = 3.69243 _—
(3.24)
w, = 8.19243 .,

Thus, the final form of H is

5513.06w

> . (3.25)
w - 130.250w" + 9150.62

H(w) =




This function satisfies the properties of an imaginary part, and a

Z(s) could be found with the above H(w) as its imaginary part if desired.
Example (3.5)

Whenever high order polynomials are to be approximated by rational
functions whose numerator degree n is less than the degree of the denominator

m, several complicated, non-linear, simultaneous equations have to be solved.

)

This example is chosen to illustrate this point. 1In the interval (-10, 10) an
odd rational function G is to be obtained such that it approximates P3 = w3
in an equiripple manner. Two solutions are obtained. One gives a maximum
error ripple of one with the degrees m and n equal to 4 and 3 respectively.,
The othér solution considers the problem with m and n equal to 4 and 1 respec-

tively. The anticipated approximation is shown in Figure 12,
Solution:

By inspection of Figure 12 and using (2.20)

odd (w3 - €) (w+ 10) (w + w3)2 (w - w4)z (w - wz)2

G(w) = (3.26)

Ev (w + 10) (w + w3)2 (w - w4)2 (w - wz)2

Note that as (3.26) now stands, m = 6 and n = 9. It appears as though four
coefficients have to be set equal to zero in order to satisfy the first sub-
case, Upon closer examination of (3.26) however, it is seen that the co-
efficients of w6 and wg are identical, thus reducing the number of simultaneous

equations to three.

The polynomial coefficients of the numerator, N(w) and denominator,

D(w), are obtained in a straightforward, but lengthy, manner. They are

- . 2
N(w) s((10*241w25+)(10a +20b+2c+2ab-€)w7 + [10b2+20ac+2bc-'€(20a+a2+ab)]w5
2 L2 ' q 4 2
+ [10c™-€(20c+20abitbr+2ac) Jw - € (20bc+c )w (3.27)

2
D(w) = (10+2a)w6 + (10a2+20b+2c+2ab)w4 + (10b2+20ac+2bc)w2 + 10c

41
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Figure 12,

A rational function approximation of m3
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where
a=-w2+w3-w4
b = —wzga + w2@4r+ Waw (3.28)
3
c = w2w3w4 .

L 9 7 5
Setting the coefficients of w , w , and w equal to zero and solving the

resulting equations for a, b, and c in terms of €, gives

a=->5

250 + %
b = - SOW—E (3.29)

2
€

125 + - € -
c =125 3 500 .

125 - =

2

It is noted that if € is known G(w) can be obtained directly from

a, b

, b, and ¢ without having a knowledge of w

w,, and w, . If, however, these

27 737 4

values are desired, the cubic
3 2
B” +aB” + bB + ¢ = O (3.30)

can be factored, the zeros of which are then w w and - w,.

27 T4 3

Letting € = 1, the equations (3.29) can be used to obtain a, b, and
c., From these and (3.27), the coefficients of the w terms can be calculated.
The G so obtained is

152474.91(1)3 + 111640,59%

4

G(w) = 5
w - 175.6024w + 161305.3

. (3.31)

The freqhencies of maximum error can be obtained from (3.30). They are

w, = 2,24838
Wy = 6.26492 (3.32)
w, = 9.01654 .

This is one of the required solutions to the approximation problem.

The other is more difficult to obtain in that the ripple factor € must be used
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to set the coefficient of w3 equal to zere, This particular coefficient is
a function of a, b, c, and €, Since, however, the dependence of a, b, and
¢ upon € is known from (3,29), this coefficient can be determined solely as
a function of €, With this coefficient set equal to zero, and after the

usual algebra, the following fourth order equation in € results:

2 3 4
€ € € €
1'8<_2‘5'6>+3(§5_6 +5<2_56> <§B_0> =0 - (3.33)

Factoring the above, the possible €'s are found to be
€ = 33,26862; 250; 1321.9980; -355.26665 .

From these roots it is seen that even the smallest value of ripple is com-
paratively large. Using the smallest value the corresponding G is

205383.5
Gw) = 0 W (3.34)

(I 198.02523(1)2 + 11927.,04

The maximum error then occurs at the frequencies

w4 = 2,94838
Wy = 7.25754 (3.35)
wz = 9.30916 .

If desired, the Brune-Gewertz method could be used to obtain a

function Z(s) which has either of the above G(w) for its odd part.

3.3 Magnitude Approximation

The properties of the magnitude function are easily obtained. From
the network function H(s) defined in Section 3.1, the magnitude squared

function is found to be:

1w )? = HGw H-juw) = (3.36)



wenvs WERN NN P ey e

Pr——

From this it is concluded that any even rational function of w having the

properties that14

a, all poles and zeros have quadrantél:synmetry
b. any pole or zero on the real frequency axis is of even multiplicity

c. the function is positive for all frequencies
can be used for a magnitude squared function.

The magnitude squared function most often used for filters is con-

veniently expressed as

2
2 1
!H(w )I = 5 k=20,1 (3.37)

1 + 02 ka(wz)

2
where ¢ is a positive real constant less than one and the function ka(w ) is
chosen in such a manner that it is small (usually of unity peak value) in the

2
passband and large in the stopband. This ka(w ) will then give a magnitude

squared function which approximates the ideal square magnitude function.1

In Example 3.6 an ka(wz) is found by the method of Chapter 2 such

23
that the ideal low pass magnitude function, defined as

1 for -1 5 w 5 1

0 elsewhere

is approximated in an equiripple manner,

Example 3.6
2

k 2
Several w F(W) are to be found such that the degenerate polynomial
Po = 1/2 is approximated with a ripple factor € = 1/2 in the interval (-1, 1).

Outside of this interval the approximating function is to be large.

Solution:

To satisfy the last statement of the problem demands that n > m.
Hence, depending upon whether the equal or greater than sign is used, the
approximation fits either Case II or III. For the present discussion assume
the maximum number of ripples;then a desirable rational function would appear
as shown in Figure 13, Using the notation of Figure 13, the rational function,

call it fN(wz) for brevity, is
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fN (UJ

N even /

Figure 13, An equiripple rational function which can be used for filter
magnitude approximations
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N-1
1
2 2 2 (3.38)
w II (w Woi g )
2 i=1
fN(w ) = i 1 ; N odd
2 2
2 a_.-b 2
2 2 2 2 2 2 2
o' [ @ -w 2i-1) T 3 W' - [T @ -0
. 2N .
i=1 i=1
XN
2
2
(w W, _1)2
2 i=1
fN(w ) =.§ ) ; N even
2 2
2 a b 2
2 2 2N 2 2 2 2
II (w w 2i—l) B w (W - 1) II w - w 21)
i=1 i=1
where 0ifm<n
b = .

1l ifm=n

To obtain the classic Chebyshev polynomials the wi's are so chosen
that all the poles of (3.38) occur at w = infinity. This means that b = 0
and the N-1 denominator coefficients of wZi, i=l,..., N-1, are equated to
zero. This gives N-1 equations and as many unknowns, Hence all wi's are
uniquely specified by the process. An illustration of the method for N=4

is given as follows: Expanding the denominator, the polynomial

6 2 2 2 4 4 4 2 2 2 2
w (1 + 2w2 - 2w1 - 2w3 ) +w (w1 + 4w3 + 4w1 wg = 2w2‘ -, ) (3.39)
2 2 4 2 4 2 4 4
+ W (wz - 2w1 Wy - 2w3 wy ) + w, " W,
results. The 3 simultaneous equations are then
2 2 2
1 + 2w2 = 2(w1 + g ) (3.40)
20 2 4wt = 2)2+22 2
w, w, = Wy + wg wl wa
40202 2402
w2 = wl wq ®, ws




48

2 2
3 5 ¥ =w wg the solutions x =1, and y = 1/8 are

obtained, Using these results

2
Letting x = wl + W

f4(u>2) = (sw? - 8w? + 12

which is recognized as the square of the Chebyshev polynomial of 4th degree.8

Another classical design is the elliptic filter with an equiripple
magnitude in both the pass and the stopbands;§ It can be shown that for such
2
a filter the fN(w ) function has poles and zeros which are reciprocally

related, i.e., if W, is the proportionality constant,

wpiwzi = wc (3.41)

2 2
where wpi(wzi) is the location of the ith pole (zero). 1 A sketch of fN(w )

is shown in Figure 14.

The elliptic functions for N=2 and 3 can be obtained rather easily
from (3.38). Letting b = 1 and O for these two respective cases, the required

polynomial equivalences are

2 a -1 w 2 :
2 2 4 2 2 1 2
Ww - w ) - 0’ @ -1 == (0 - 5 i N =2
1 a 2 2
4 M w
1
(3.42)
2 2 w 2 :
2 2 2 2 2 2 1 2
w (W - w ) -(w -1 (w -ow,) =-— 0w’ - = i N=3 .,
1 2 —Z 2
M w
1
Equating coefficients and solving for the unknowns in terms of wc and M
respectively, gives the following solutions
W - 0?
2 2 W 1 .
f(w)=MM ——— (3.43)
2 2
© 2
2 [
@ - =)
wl .
where
2 2
M= (o +./0 " - 1)
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Figure 14. The fN function for the elliptic filter
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Similarly,
2, 2 2 2
2, 2@ w0
fa(w ) =M —MM———— (3.44)
" 2
c 2
(w - ZTE)
1
where
0?2 = Mo\ 2
- - 2
2 M
wz_sﬁ-lwz
1 M+l 2
2 - 4
wc = M”z
=2 2
M = f3(w ) .
c

2
Both solutions agree with those given by Papoulis 1, who arrived at

them in a somewhat different manner.

For highér orders of N, extensions of the above procedures would lead
to several non-linear simultaneous equations; however, because this problem
31,6
has been given a more elegant solution in the literature 1 it will not be

pursued further,

3.4 Constant Group Delay Approximation

The group delay, T, of the all-pole transfer function

H(s) = A = A ; Resi <0 (3.45)

M, + N N
H (s - si)
i=1

2 2

where M, + N_ are the even and odd parts respectively of a Hurwitz polynomial,

2 2
can be expressed in one of two ways. The first14

N



M_N_.' - N M_'
=1 22 272 where ' indicates (3.46)
J M 2 2 differentiation ‘
._N X
2 2 s=jw
. . 29
is the polynomial representation. The second
N N s
1 b} :
’T'=l [ = = 1 ] =Z -
2 s - s, S + S, 2 2
X 1 1 . s - S, .
i=l s=jw i=l i s=jw

is in terms of the left-half s-plane pole locations of H(s).

Using analytical continuation such that T is valid for all complex s,

2
the following properties of T can be deduced: °

a, T7(s) has two zeros at s = o
b. T(s) is an even function
c. T(s) is positive, real and bounded for s = jw.

The necessary and sufficient conditions that an even rational function of s be

2
a group delay function of an all pole transfer function are: o

a, The poles have quadrantal symmetry, and there are no poles on

the jw axis,

b. The residues of left-half plane poles are 1/2, right half plane
2
poles -1/2, Equivalently if s~ is replaced by p, the resiude of

any pole is the square roct of the pole location,

From the foregoing, it is now possible to pick one of the equiripple
rational functions developed in Chapter 2 and force it into being a group delay
function. At the outset, it is noted that the rational function chosen must
(1) be an even function and (2) have a numerator degree of two less than the
denominator, Condition (2) and the fact that a constant is being approximated
fix the approximation to Case IV. The degree of the denominator will be 2N,
hence, from Table 1 the total number of arbitrary constants is n + 4 = 2N + 2,
Two of these constants are specified by fixing the polynomial Po = co and the

relative ripple €. Also from Table 1, the maximum number of peak deviations is

51
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2N + 1. Because the function is even, one extreme point will always occur at
the origin; the others will be symmetrical about w = 0, Thus, the total
maximum number of arbitrary peak deviations is N, but this is exactly the num-
ber of arbitrary constants yet to be specified. Therefore, it can be con-

cluded that

a, The polynomial Po = c0 can be made any convenient value (for this

problem let ¢ = 1).
b. The ripple factor € is arbitrary.

c. The N pole locations can be fixed by varying the N unspecified
peak deviation frequencies until the residue condition is met.
The resulting left half plane poles of the equiripple rational
function can then be used to obtain a transfer function H(s)

with an equiripple group delay.

d. The equal ripple group delay will look similar to the illustration

of Figure 15.

Using the notation of Figure 15 and the rational function in (2.14b),

the proposed group delay, as a function of w is:

N-1
2 2 2 2.2
W II (v - w, )
(@) =1 + € - 26 — =1 . N odd
- N-1 N-1 ’
) 3 )
2 2 2 1-€ 2 2 2 2
‘”H(‘”'wZi)'m(w'wl)n(w"”n#:l?
i=1 i=1
(3.48)
N
2
W - w
§ 7]
T =1 +€ - 2¢ =L N even
- v E N—z‘ 3 .
z(wz_w2)2_1-ewz(wz_ 2)2(w2 b 2 2
I1 21 1+€ @, [1 21 '+ 1)
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1+G

1-G

Figure 15, The equiripple group delay approximation of a constant




Using analytic continuation, i.e., letting 52 = - wz, and then, since T is an

2
even function, letting s = p the above becomes

N-1

2
2
2 € p II (p + u21)
=1

i
= € - .
TP =1+ 1 N1 ; N odd
2 2
2 l1-¢€ 2
P II (p+uy) - 75 (P+u) II (P +uy, )
i=1 i=1
(3.49)
X
2
2 € II (p + u21)
T(P) =1 +€ - 1=1 ; N even
p - E N-2 ’ e
2 2
2 l - € 2
(®+uy) - prep ®ru) [Teru,
i=1l i=1
2 .
where u. = ; i=1, 2, ..., N,

It is interesting to note at this point that the results of Ulbrich

and Pilotyzg-could be duplicated by letting u., = 1 and letting the average

1
delay be an unknown quantity., The ripple factor €, under these circumstances,
would be an absolute delay. Because of the transformation involved, Ulbrich

and Piloty could not be this flexible.

2
Abele did not use an explicit rational function in his work but
imposed constraints on the numerator and denominator polynomials of (3.46).
These constraints appear in a form similar to the numerator and denominator of

(3.48).

Prior to the publication of Abele's work this author worked out closed

form solutions to the equiripple group delay for n = 1 and 2, using an approach

similar to that of Abele. Helman16 using Bernstein's Chebyshev rational

)
function, also obtained solutions for n = 1 and 2. In Helman's technique, how-
ever, it is necessary to find the zeros of a high order polynomial to obtain

the desired solution,
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A closed form solution for the polynomial coefficients of the trans-

fer functions

o
Hl T s +a
o
(3.50)
b
Hy = :
s + b, s + Db
1 o)

such that the group delay is equiripple, will now be given. Using (3.46) the
group delay of (3.50) is

(3.51)

bobl - b1 s

2 2

2 2 4
bo + (2bo - b1 ) 85 + s

which, to be equiripple, must also be equal to (3.48), Using analytic contin-

uation and simplifying, (3.48) becomes for n = 1 and 2

2
(1 - € )w 2
_ 2€ 1
W= 2_1-€ "2
2€ wo
(3.52)
2 2 4
62‘(2w2 wl ) s+ Ezwz
To =71
s + (2€4w2 - €3wi ) s+ €4w2
where
1 - €
€. =
1 1 + €
1 - €
€ _ =
€
2 1 1
€1
€ =
- €
3 1 1
1 .
€4_1-€
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Equating the coefficients of (3,51) to those in (3.52) and solving

the resulting simultaneous equations, the solutions for n = 1 and 2 are found

to be
n=1: 1
wl =—— /2€(1 - €)
1 - €
(3.53)
a = 1
o 1 +€

n=2

2 4€ 3 + € 1 + € ¥
Wy = 2 [ A - A+ G)J

a - €%
2 _(, 7€ 2
U =\ 2 ta/T 7€ )%
1 +€ 2
by A/ TE ®

N € /€ "
17 2€ 1 +€ 1

Obviously, the equations for n greater than two become so complicated

that a closed form solution is no longer possible., Numerical answers, on the
other hand, can still be obtained by using a high speed digital computer to
perform the many operations required in an interative solution,

There are many approaches which can be used in solving non-linear
simultaneous equations.l’17 One method is the Newton-Raphson technique. This
procedure has an advantage over many others in that, if the initial guess is
within the region of convergence, the convergence is extremely rapid, A dis-
advantage of the method lies in the fact that the region of convergence for
many problems of this type is small.1 For the problem at hand the wi's will
be iterated., This means, if the Newton-Raphson procedure is used, that the
initial guesses must be known reasonably accurately. Such an estimate can be
made very easily if it is reasoned that the wi's for increasing N will follow
a definite pattern. Furthermore, this pattern has already begun with a closed

form solution for n =1, 2.
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Briefly, the method of solution undertaken is as follows:

a, From a knowledge of lower order solution, a set of wi's is
picked to correspond to a large ripple factor € (itis found
experimentally that the region of convergence is larger for

large €),

b. Using these values of wi, the denominator of (3.49) is factored

and the residues obtained.

c. Knowing that the residues squared less the root locations must
be zero gives N equations, Fi’ to be satisfied in terms of the

N unknowns w,, i=1, ... N.

d. The partial derivatives aFi/Bwi are obtained numerically in the
approximate form

EEQ,~ Fj(wi + éwi) - Fj(wi)
dw, Sw.
1 1

where & is a small constant.

e. The N simultaneous equations (Newton-Raphson)

are solved for the unknowns Awi.

3

F.
wi A(.Ui =~F, ; (3.55)

J

0,I
()
<.
l
=
-
.
.
.
~
=2

1

f, The initial values of w, are replaced by W, + Awi.

g. The above is repeated (usually from 4 to 8 times) until the
wi’s are made as small as the numerical accuracy of the com-
puter allows., The error commonly obtained is from one part
in 10]"0 to one part in 107 for N ranging from 3 to 10.

h. When the set of solutions wy is known, it is then used for

the initial guesse, and the ripple factor € is given a smaller

value,

The pole locations of the all pole equiripple group delay filter

resulting from the above program are tabulated in Table 2 of the appendix for

N

3

b

ees 5, 10, each with € = 0,005, 0.01, and 0,05. For comparative purposes,



filter for 3 values of ripple, €,
low frequency delay is unity.

4

10

TABLE 2

Root locations of an N pole (N = 2 to 10) equiripple group delay

€ = 0,005

real part.

~1,4021451

-1.9088240
-1.5693900

-2.1050989
-1.6498925

-2.3081926
~-2.1996486
-1,6951436

-2,4057414
-2.2532646
-1.7235697

-2,5044409
~-2.4611483
-2,2872444
-1.7428862

-2.5604843
-2,4963531
~2.3105097
-1.7567883

-2.6168521
-2.5961134
-2,5205210
-.23273558
-1,7672335

-2,6526863
-2,6205920
~-2,5380595
-2,3400882

imag. part

t.85237134

0.0
t2,0151812

t1,1051383
t3,2352073

0.0
12,3365664
t4.5363797

t].2339268
t3.6461522
t5,8905328

0.0
£2,5460921
15,0065049
t7.2812168

t1,3128118
+3.,9086731
t6.4018708
t8.6983493

0.0
t2,6761673
t5,3058951
+7.8226335
10,135398

t).3635814
t4,0741370
t6.7281919
t9,2625868

-1.7753412 t11,587925

€ =0.01

real part

-1.3628732

-1.8061331
-1.5022964

-1.9643081
-1.5669472

-2,1262469
-2,0381080
-1.6028093

-2.2016824
-2.0794685
-1.6252314

-2,2777117
-2,2440387
-2.1055654
-1.6404479

-2.3203970
-2,2708293
-2.1234089
-1.6513970

-2.3632467
-2,3474107
-2.2891886
-2.1363241
-1.6596318

-2,3903646
-2.3659368
-2,3025079
-2.1460838
-1,6660347

imag. part
t .,94649670

0.0
+2.0802275

t1.1459939
t3,3388487

0.0
t2,4144421
t4,6721443

*t1.,2704024
t3,7547734
t6.0529615

0.0
t2.6127150
£5,1407019
t7.4661369

t1,3427945
£4,0003415
16.5577090
t8.9025775

0.0
t2,7309954
t5,4187559
+7.9971129

t10.356477

+1.3883671
t4,1499642
t6.8593217
t9,4533690
11.823921

€ =
real part

-1.2039728

-1.4703023
-1.2765428

-1.5460122
-1.,3079526

-1.6218304
~1.5791674
-1.3250626

-1.6550387
-1,5974133
-1.3357252

-1.6882400
~1.6733428
-1.6088716
-1.3429725

-1.7065422
-1.6848570
-1,6167055
-1.3482052

-1.,7248403
-1.7180599
-1.6927410
-1.6223879
-1.3521532

-1,7363559
-1.7259501
-1.6984663
-1.6266905
-1.3552374

The normalization is such that the mean

0.05
imag. part

t),0416954

0.0
t2,2963311

t1.2621897
t3,6530753

0.0
t2,6242135
t5.0642095

t1.3628473
t4,0389428
t6.5084283

0.0
t2,7783913
t5,4857180
t7.9747231

t31,4157328
t4,2258593
+6.953096

t9,4567365

0.0
t2,8634253
t5,6946244
+8,4373817

£10.950485

t1.4477569
t4,3324074
t7.1785723
t9,9322817
t12,453322
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Table 3 gives (a) the zero frequency delay (for a unity 6 db bandwidth), (b)

the ratio of the 3 db to 6 db attenuation points, (c) the ratio of the equiripple
approximation interval to the 6 db attenuation points, and (d) the percentage
overshoot of the impulse response., Assuming the maximum of the equiripple group
delay transfer function occurs at zero frequency (this assumption is true for

N odd; and for N even if € is smaller than about 0.05), the numerator constant
of the transfer function can be made equal to the denominator constant and the
magnitude characteristics vs. angular frequency can be computed. A plot of this
characteristic is shown in Figure 16 for N =3, ..., 10 and € ; 0.005. The cor-
responding attenuation curves for 0.005 S 0.05 are but slightly different., As

€ becomes larger (=0.l1) the magnitude response departs from that given in Figure
16. Two major differences are noted: (1) the individual poles in the transfer
function become apparent by the lumpy nature of response, and (2) the high fre-

quency attenuation is a few db greater,

For small €, the attenuation curves are almost identical to those of
2
the corresponding Bessel or maximally flat delay filter 8 up to about the 10 db

attenuation points. For higher frequencies the attenuation becomes larger.

The applications of constant group delay filters are, primarily, for
the transmission of pulsed information., Thus, the impulse response of such a
filter is of prime interest. Two families of curves are given in Figures 17
and 18 for the impulse responses (N =3, ..., 10) with € = 0.005 and 0.05

respectively. From these responses the following conclusions can be drawn:

a, The pulses are nearly symmetrical about the time t = To. This is

particularly true for large N.
b. The impulse response maximum is almost independent of N,
c. The overshoot decreases with an increase in N,

d. The curves are not plotted to sufficient accuracy to observe
the peak of the over or under shoots. However, from the com-
puter data it is noted that for N > 7 the over or undershoot ap-
proaches a constant of 0.2 and 2,0 percert for € = 0,005 and
€ = 0.05 respectively. The figures predicted in the introduction

were about 0.1 and 1.0 percent respectively.

The reason the overshoot and asymmetry is greater for small N is that

the group delay approximation interval is not as large as the passband of the




TABLE 3

With a unity 6 db radian frequency bandwidth (a) the low frequency
mean delay, (b) the 3 db bandwidth, (c) the equiripple group delay approxi-
mation interval, and (d) the impulse response overshoot (€ = 0.005, € = 0.05)
are given,

€ = 0,005

N To ®3 4p"%6db LT &b
2 1.97316 .701656 .389385

3 2.51335 .742110 ..715918 2.3
4 3.11611 .731226 .962641 2.9
5 3.62909 .721310 1.18577 2.5
6 4,07041 .718634 1.38658 1.7
7 4.45741 .713878 1.57773 .9
8 4,82706 .717055 1.75023 .4
9 5,16313 .709500 1,91449 .2
10 5.48223 .716544 2,06791 .2

€ = 0.0l

2 1.97566 .707682 . 460990

3 2.53967 .744943 .793434

4 3.16442 .727498 1.03260

5 3.64538 .722188 1.26177

6 4,11155 .717549 1.45456

7 4,47961 .713319 1.65060

8 4.86091 .718993 1.81672

9 5,18980 .706297 1.98182
10 5.50975 .720700 2,13315

€ = 0,05

2 2,01019 .737244 .668501

3 2.63387 .742351 .992804 3.1
4 3.33354 .711244 1.19497 3.1
5 3.65745 .736920 1.47683 2.2
6 4,29086 .704986 1.59647 2.1
7 4,45445 .722572 1.86774 2.1
8 4.,99602 .733237 1.96240 2,2
9 5,22731 .691956 2.16169 2.2
10 5,59256 .755409 2,28950 2.25
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filter. Thus, the higher frequency components arrive out of phase causing

irregularities in the impulse response.

3.5 Narrow Band Approximation of Linearly Decreasing Group Delay

This chapter will be concluded after the formulation of the equi-
ripple, linearly decreasing, narrow band group delay problem has been investi-
gated. A graphical solution to this problem has appeared in the literaturezo,

but as of yet an analytical one has not.

Consider an all pass transfer function

N (s +s.) (s + s %)
1 1

T(s) = II (s - si) (s - si*)

i=1

where Resi <0 (3.56)

with an even number of complex poles. The numerator will give the same delay
as the denominator. Therefore, the total delay can be obtained by inserting

a multiplying factor of two into (3.47), giving

N
. \ 1 1 1 1 -
TCw) = 2_ [s - s TS - s¥ s+s. s+ * ‘ (3.57)
i i i i )
i=1 S=jw
Letting s, = - G£ + jw

(3.58)

N
TGw) = }_ [ L + 1 - 1 - 1 ]
5 o, + Jw + wi) o, + Jw - wi) -0, + Jjlw + wi) -0, + jlw - wi)»

The narrow band approximation is obtained by noting that if wi >> Gi and wl ~ W,
R A Wy then the first and third term of (3.58) are negligible for the

frequency band of interest. With the definitions

wo = a constant frequency displacement
W o= Ww-Ww_ = u+ jv
o
u, = w, - W
i i o
v =0
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the narrow band group delay is given in the approximate form

T(W)

(3.59)

i}
M >
—
E3
]
=1

P e
+
[
<

[}
£
i
=

[P 3
1
a
<

-
[

!
1
—
£

1
.
£
"
»*
]
L3 ()
]
_

where w, = u, + jv..
i i i

The following properties can now be observed about the narrow band

group delay:

a, There are two poles at w = .

b. The poles are symmetrical about the real axis,
c¢. The residues are ¥ j,.

¢. The denominator is of even degree.

e. The rational function is neither odd nor even,

From these properties it is evident that the above described rational function
fits Case V. If such a function is to approximate the straight line To - ku in
the interval (o, ul) with an equiripple error it will appear as shown in

Figure 19. Reference to Table 1 indicates that the total number of arbitrary

constants is n - £ + 5 = N + 2, One of these constants (u = 0) has already

N+2
been specified, It will require N degrees of freedom to satisfy the residue con-
dition. This leaves one more constant which can be fixed independently., Let it

be €., From Figure 19 and (2,13) the equiripple narrow band group delay takes

the form
N N
2 2
(u - kl)u II (u - u2i) - (u - kz) (u - ul) I] (u - u21+1)
i=1 i=1
T = -k N N (3.60)
w-uN?- @-u) ] - 2
u II 4 Uy oYy II U Yia
i=1 i=1
where
TO + €
ko =—x
T - €
kK, = -2 )
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Figure 19.

,“TNvl T*LN M2 H

The narrow band group delay approximating a straight line in an
equiripple manner
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In order to make the numerator 2 degrees less than the denominator
requires 3 simultaneous, non-linear equations, This in addition to the residue
condition will fix the N + 3 unknown constants in (3.60). A solution of this
problem has not been attempted. Because of the large number of equations, it

will indeed be a difficult one.
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4, A NUMERICAL PROCEDURE FOR OBTAINING CONSTANT GROUP
DELAY WITH EQUIRIPPLE ERROR AND EXAMPLES

There are many problems of an equiripple or pseudo equiripple nature
which are difficult, if not nearly impossible, to formulate by the equiripple
rational function of Chapter 2. Two such problems are considered in this chapter.
The first is a logical extension of the constant group delay approximation
undertaken in Section 3,4; the ripples are weighted such that they increase with
frequency. The second is the determination of the pole locations of an all-
pass network to compensate the non-constant group delay characteristics of a

sharp cutoff filter.

The proposed method of solution for these two proibilems utilizes the
rapid convergence properties of the Newton-Raphson iteration technique. The
steps taken to obtain an equiripple or pseudo equiripple solution are outlined

below:

a, A crude solution is found in which the desired number of ripples
are present, This solution depends upon the nature of the prob-
lem; in some cases it is easily obtained, in others it is more

difficult.

b, If there are N arbitrary unknown parameters available, then N

i=1 N are formed by setting the N distances

3

equations, Fi ooy

from the maxima or minima to a known reference equal to zero.

¢. The maxima and minima, if not known analytically, are obtained

7
numerically by Newton's method.1

d. If the reference mentioned in (b) is chosen appropriately, then
after one iteration, using Newton-Raphson, the N equations are
solved with sufficient accuracy that the reference can be shifted
towards the desired ultimate solution. The above process is then

repeated until the final reference value has been reached.

The two problems mentioned above will now be used as examples to

illustrate this procedure.
Example (4.1):

The group delay can be made to approximate a constant over a larger

interval by increasing the ripple factor. This increase, however, causes more
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over and undershoots to be present (introduction). As a compromise it seems
reasonable that the group delay should approximate a constant best where most
of the spectral energy falls, or where the magnitude function is largest, With
this type of weighted error the approximation interval would be greater, and

there would be less distortion in the impulse response.

The problem is thus two fold, (1) to pick a desirable weighting
function, and (2) to determine the pole locations of an all pole transfer
function such that the peaks and valleys of the group delay fall on the boundary

of this weighted error region.

One attractive weighting function is

2
4n €_/€ .
(n €,/€) (w/w) (4.1)
error = % € €
where
61 = the zero frequency error
62 = the error at the end of the approximation interval wl.

With this weighting function, a typical group delay (n = 7) will be as shown
in Figure 20, Obviously, a crude approximation to this problem is already
known, i.e., the equiripple approximation developed in Section 3.4. The N
pole locations can now be specified in terms of the N peak deviations occuring

at w veey W

Y by means of the N non-linear equations

N+1

0 2
141
i+l (n €_/€ ) (—X2y |
_ 2 _ _ 2771 w1 _
Foo= T ) [1 + (1) € € J =0 (4.2)

1

for i=1, ..., N.

These equations, in turn, are function of 61, 62, and the pole locations. That

Fi is a function of the poles can be seen from the expressions for the group

delay.
N s
9 .
T = - 2 —— (4.3)
w.” + s,
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The group delay with an exponentially increasing error ripple

(N=17)

Figure 20,

P ———




and the maxima and minima, the latter being zeros of
N
R

2
____dT(;’)=§____TZ i 0. (4.49)
dw i;i (w + s, )

An initial choice of the pole locations and the references 61 and 62
can be made such that the set Fi is solved to a reasonable degree of accuracy
in one iteration. A new 61 and 62 are now chosen and the process repeats
until the desired solution results. Many factors dictate the number of
iterations required to drift the poles into the neighborhood of the solution.
Among these are: (a) the required overall change in €1 and €2 from the
starting values, and (b) the pessimistic, or optimistic, choice of the incre-
mental changes in €1 and €2. A pessimistic choice requires many more itera-
tions than necessary and an overly optimistic choice results in a solution
outside the region of convergence, requiring a new start. Once 61 and‘€2
reach their final values, continued iteration will give the necessary exacti-

tude to the pole locations.

A computer program was written to perform the above operations, Very
few iterations were required for the final answers to be accurate to at least

8 significant figures,

A typical example, with N = 10, €. = 0,01, and €, = 0,16, has the

1 2
pole distribution shown in Figure 21. For comparison, the initial pole dis-
tributions of the equiripple group delay filter with € = 0.01, and a Bessel

filter are given also,

The effect of the weighted ripple approximation on the impulse

response is best illustrated by a low order example. With N = 3, 61 = 0,005

and €2 = 0.08 the impulse response is computed and compared to that of the
equiripple group delay (€ = 0,005) as illustrated in Figure 22, Two differences
are noted in the figure. One is that the symmetry is improved about the im-

pulse's maximum due to the increased group delay approximation interval, The
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other, increased overshoot, is a decided disadvantage. Both of these differences,

however, are small, and what is more, these differences become less noticeable

for higher N.
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Figure 21. The upper half-plane pole distributions for x weighted ripple,
€, =0.01, ¢, = 0.16; (® equiripple, ¢ = 0,01; [l Bessel. All
configurations unity delay .
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Example (4.2):

There are many existing procedures for compensating the non~-constant

7,12,15,27

delay characteristics of sharp-cutoff filters. Foremost among these

methods is Darlington's Chebyshev polynomial series approach10 which many

2,15,2
12,15,27 This method requires that the group delay be

authors have used,
expanded in a Fourier series, and various dominant terms in the series are
made negligible by an appropriate choice of all-pass network constants.

This method has one disadvantage, i.e., the number of Fourier series terms
contributing to the group delay error is unnecessarily large when the group
delay of a sharp cutoff filter is being expanded over an interval that extends

2
beyond the filter's cutoff.1

This example is used to illustrate a method wherein the poles of an
all pass compensating network can be found to give an overall equiripple group
delay characteristic to the low and all-pass filter combination, Further-

more, the delay can be made equiripple as far beyond cutoff as is desired.

Before the problem proper is started, one property of a minimum
phase sharp cutoff filter needs to be investigated. Guillemin, using the
Hilbert transform, has shown that the group delay of an ideal filter (as
defined in Section 3,3) increases in a monotonic manner until it reaches a
peak at or near the filter's cutoff., Beyond this point the group delay de-
creases monotonically to zero.14 This type of behavior is indeed observed in
the classical Butterworth24 and the low ripple Chebyshev filter (for larger
ripples the group delay increases but in a non-monotonic manner). The group
delay of a typical sharp cutoff lowpass filter is shown in Figure 23, 1In
order that the overall filter - all-pass combination possess a constant group
delay, the shaded area must be added by the all-pass (an all-pass giving neg-
ative group delay is unrealizable). An equiripple error solution to this

problem can now be obtained in the following sequence:

a, It is noted that the narrow peak occuring at the cutoff wc
is due primarily to the pole in the low pass filter which is
nearest the cutoff frequency, and also nearest the jw-axis of

the complex s-plane.

b. An equally spaced pole distribution parallel to the jw-axis

will give an overall group delay characteristic that is pseudo
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2

Figure 23, The group delay of a typical sharp cutoff filter. The shaded area
is the amount of delay which must be added by an all-pass section




equiripple. The closer the poles are to the jw-axis, the

larger is the ripple.1

If the pole distribution of (b) is chosen such that it includes
the pole mentioned in (a), then an "almost' equiripple group
delay can be achieved. The pole locations and the delay char-

acteristics for this combination are shown in Figure 24,

In the work that follows assume that an even number, N, of
complex poles have been added to the fixed complex pole.

The N equations

Fi = 'r(wi) - 'r(wi+2) =0 (.5)

will be of an even number and can be solved by Newton-

Raphson to determine the exact locations of the added N

poles to give an exact equiripple group delay. Once N and

the fixed pole location have been specified, no further control

exists over the ripple € or the average delay To.

The group delay for the above equiripple configuration can be

written in the form
N
2 k i 2
T(Ww ) = - 3 2 -3 * 'rfp(w ) (4.6)
w + s,
i=1 i

where Tfp is the group delay of the fixed complex pole. The
value of k is one when the added poles are simple., Again using
Newton-Raphson to solve (4.5), the value of k can be increased
from one to two in about 5 single iteration steps. This makes

the added poles double.

The remaining poles of the low pass filter can now be included

in the group delay to give

N s s
‘ i K i
T"}L ) 2t T5p v 32 2.2 ) (4.7)
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Figure 24,

jw

(a)

|
|
I
|
|
|
|
|
|
]

l
|
L

I
I |
5 Wq W3z Wz W
(b)

(a) A parallel pole distribution, and (b) its associated group
delay

|

|

|

l

|

i

|

|

|

' A
wg Wy Wg w

lrd



where M is the number of filter poles. The value of K can be
gradually changes from zero to one using the Newton-Raphson

technique to solve (4.5). This process shifts the added pole
locations such that the equiripple group delay is still main-

tained.

g. The campensation is completed by noting that the group delay
of one double order pole at s = - Gl + jwl is the same as one

simple pole at s = - 01 + jwl together with one zero located

at s = 0. + jw This latter combination gives the all-pass

1
network.

1°

For convenience two classifications are given to the compensator
poles. Type A is given to the complex pole pairs whose imaginary part is
less than the cutoff frequency. Similarly, Type B is given to those poles

with an imaginary part greater than the cutoff frequency.

From the digital computer program written to perform the indicated
steps, two different all-pass compensators were obtained fromthe Butterworth
filters of degrees 4 through 8., One compensated the group delay up to the
cutoff frequency (one Type A section); the other compensated the group delay
up to and beyond the cutoff (one Type A and one Type B section), The cor-

responding pole locations are given in Table 4, The impulse responses of

the Butterworth filters (degrees 4-8) with (a) no compensation, (b) one A sec-

tion and (c) one A and one B section are shown in Figures 25, 26, and 27
respectively. The Butterworth filter of degree 3 with Type A compensation
will not work by this method because the dominant pole is not close enough
to the imaginary axis and the addition of another complex pole pair results
in a delay without ripples. This particular case has already been solved by
O'Meara with a single real pole all-pass section19 and needs no further dis-

cussion,

Several conclusions which in turn agree with the idealized time

domain studies of Bangert3 can be drawn from an inspection of Figures 25-27,

Some of these conclusions are:

a. Type A compensation doesn't necessarily decrease the magnitude
of the main side lobe, it merely puts the large side 1lobe in

front of the main pulse instead of behind it,
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TABLE 4

The following table gives the pole-zero locations of the compensating
all-pass network and the filter being compensated (To = low frequency mean delay,
AT = peak deviation from To).

Filter
poles

Compensator

Comments
pole-zeros

real part imag. part real part imag. part
t,688654  12,30652 -1.00000 0.0 Butterworth, N=3, 1B section
- .500000 *,866025 T, =2.936, AT=.4611
t,769347 t ,420376 - .382683 1,923880 Butterworth, N=4, 1A section
- .923790 1,382684 T,=6.630, AT=,01338
t.587409 t ,371540 - .382683 1,923880 Butterworth, N-4, 1A and 1B
t.386700  t1,42347 - .923879 *t,382684 section, T _=8,270, AT=.08257
t,500331 t ,374832 -1,00000 0.0 Butterworth, N=5, 1A and 1B
t,329566  t1.43535 - .309017 %,951056 section, T =9.180, AT=,2155
- .809017 *,587785
t.644130 t ,411718 -1.00000 0.0 Butterworth, N=5, 1A section
- .309017 %,951056 To=7.711, AT=.06597
- .809017 *t,587785
t.546426  t ,404039 - .258819 *,965926 Butterworth, N=6, 1A section
- .965926 %, 258819 T,=8.770, AT=,1735
- .707107 %.,707107
t,433629 t ,374337 - .258819 1,965926 Butterworth, N=6, 1A and 1B
t,287087 t1.43698 - .965926 1 ,258819 section, T _=10.09, AT=,4094
- .707107 %t,707107
t,469585 t .397092 -1.00000 0.0 Butterworth, N=7, 1A section
- .222521 %,974928 T,=9.803, 4T=,3422
- .623490 t,781831
- .900968 t, 433885
t.380686 t .371971 - .222521 %,974928 Butterworth, N=7, 1A and 1B
t 254003 t1,43496 - .623490 1.781831 section, T _=11.01, AT=,6574
-.900968  *,433885
-1.0000 0.0 )
t,408057 t . .390432 - .195090 t,980785 Butterworth, N=8, IA section
- .831470 %,555570 T,=10.81, 4T=,5715
- .980787 t,195090
- .555570 *t,831470
t,337518 t ,368411 - .195090 *,980785 Butterworth, N=8, 1A and 1B
t,227328  t1,43155 - .831470 *,555570 section, T,=11.92, AT=,9525
- .980787 t,195090
- .555570 *,831470
t,198711 t ,164874 - .111963 *1,01156 Chebyshev, 1/2 db ripple,
t,179438 t ,795079 - .293123 %,625177 N=5, 3A and 1B sections
$.197993  t ,469677 - .362320 0.0 T,=21.37, AT=,7671
£,129761  t1.20926
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b, The time from the excitation to the time the pulse has decayed

to a small value is independent of the delay compensation.

c. With Type A and B sections, the main pulse and the two large

sidelobes are very close to sin x/x.

d. The distortion terms predicted in the introduction are of the

form (assuming 100% efficiency)

m
distortion = ¥ (-1) =- € [.35 o (4.8)

4m

Using the 8th degree Butterworth filter with one A and one B
section the above is (m = 6, n = 16, To = 11,9 and € = ,08)

sin(t - T+ 8.9)
o

. N - i
distortion = .0186 T T T8.9) . (4.9)

Without actually plotting the sum of the distortion term and
.35 sin(t - To)/t - To’ it can be seen that this will give a very close
picture of Figure 27 (curve n = 8), since not only are the sign and the
multiplying constant of the distortion term about correct, but also the magni-
tude of the delay shifts, From these results it is observed that the dis-
tortion terms so arrange themselves that the physical system does not display

an anticipatory effect,

One more example of compensation will be given. This is a 5th
order Chebyshev filter (1/2 db ripple) compensated with three A sections and
one B section. The impulse response is shown in Figure 28, Indeed, for this
example the output is very close to sin x/x for a considerable time on both

sides of the main lobe.

Other filters up- to 8th order have been compensated by this method.
One difficulty was encountered with large ripple Chebyéhev filters (2 dS ripple),
The group delay of this filter is not a monotonically increasing function for
frequencies less than cutoff, Several small local minima and maxima are present,
This necessitates an incremental change in K of (4.7) to be very small. Other-
wise the computer program will evaluate the wrong minimax and hang up. Because
of this, considerable computer time is requir ed (about 4 minutes on the CDF 1604

for a sixth order filter with 5 or 6 section of compensation).
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Problems of the preceding type can be worked much faster if inter-
polation schemes are used, As a parameter, K in (4.7) for example, is changed
the past pole locations are remembered, From these, linear or parabolic inter-
polation can be used to estimate future locations. This method has been used

on problems of the above type with very favorable results.

In summary, this chapter has made use of the digital computer's
ability to perform the many iterations required in going from a rough guess
to: a useful or desirable solution, Indeed, by modifying Example (4.2) slightly,

the equiripple group delay problem could have been solved.
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5. SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS

A rational function which approximates a polynomial in an equiripple
manner has been developed., The limitations of the Chebyshev rational function
of Helman and Bennett, mentioned in Chapter 1, have been overcome. Some dif-
ferences in these two functions are: the old form has arbitrary pole locations
and the new one has arbitrary error maxima and minima; no transformations are
involved in the new rational function, hence, the coefficients of the numerator
and denominator are simple algebraic combinations of the maxima and minima
error frequencies. This is in strong contrast to Bennett's form which depends
upon a radical in a transformation. Consequently, the numerator of his rational
function is cluttered with radicals, the even powers of which give a polynomial

and, hopefully, the odd powers cancel.

Several examples were given to illustrate the use and flexibility of
the new rational function. Some examples were used which have been treated
using the old rational function; namely, the group delay and magnitude squared
function approximations. These problems were adequately handled by the new
rational function, In addition, several problems were undertaken which were
handled easily by the new rational function. These in turn would be difficult
or impossible to solve with the old rational function, Examples of this latter
type are given in the sections on even and odd network function parts approxi-

mations.

It can be concluded that the new rational function can be a useful
tool in approximating a low order polynomial to give an equiripple error. This
is especially true when less than the maximum number of ripple is desired, or

when the placement of the maxima and minima points is important.

As stated in Chapter 1, there are many problems which cannot be
adequately handled by either equiripple error or rational function. However,
many of these problems are of a type that can be solved using iterative tech-
niques with the aid of a digital computer. A numerical scheme has been suggested
to accomplish this latter goal. The method depends upon an initial guess which
is already in itself a crude solution to the problem, This in many cases is a

disadvantage.

There are many new and as yet unsolved problems which have been

brought into focus by this work. Some of these are:
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The non-linear simultaneous equations for the linearly in-

creasing group delay need to be investigated and solved.

In this work it was assumed that various coefficients of the
numerator could be set equal to zero. Necessary and suf-
ficient conditions are needed to say whether this is always

possible, or if not, when,

An extension of the developed theory to include the approxi-

mation of piecewise smooth polynomials would be useful.

Several degrees of freedom are used in making a transfer
function realizable by a symmetrical network. The degree
of freedom not utilized can be used to satisfy other con-
straints, One useful constraint on these freedoms would
be to require an equiripple group delay solution, (however,

the maximum number of ripples would not be present).
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